

16路开关量输入转RS-485/232,数据采集远程DI模块 WJ61

产品特点:

- 16路开关量采集,隔离转换 RS-485/232输出
- 支持16路干接点输入或16路湿接点输入
- 通过RS-485/232接口可以读取每通道电平状态
- 信号输入 / 输出之间隔离耐压3000VDC
- 宽电源供电范围: 8~32VDC
- 可靠性高,编程方便,易于应用
- 标准DIN35导轨安装,方便集中布线
- 用户可编程设置模块地址、波特率等
- 支持 Modbus RTU 通讯协议, 自动识别协议
- 低成本、小体积模块化设计
- 内置看门狗使系统更加稳定
- 外形尺寸: 120 mm x 70 mm x 43mm

典型应用:

- 电平信号测量、监测和控制
- RS-485远程I/O,数据采集
- 智能楼宇控制、安防工程等应用系统
- RS-232/485总线工业自动化控制系统
- 工业现场信号隔离及长线传输
- 设备运行监测
- 传感器信号的测量
- 工业现场数据的获取与记录
- 医疗、工控产品开发
- 开关量信号采集

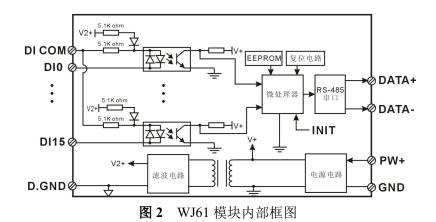


图1 WJ61 模块外观图

产品概述:

WJ61产品实现传感器和主机之间的信号采集,用来检测模拟信号。WJ61系列产品可应用在 RS-232/485总线工业自动化控制系统,开关量信号测量和监测,高低电平信号的测量以及工业现场信号隔离及长线传输等等。

产品包括电源隔离,信号隔离、线性化,A/D转换和RS-485串行通信。每个串口最多可接255只 WJ61系列模块,通讯方式采用ASCII码通讯协议或MODBUS RTU通讯协议,波特率可由代码设置,能与其他厂家的控制模块挂在同一RS-485总线上,便于计算机编程。

WJ61系列产品是基于单片机的智能监测和控制系统,所有的用户设定的地址,波特率,数据格式,校验和 状态等配置信息都储存在非易失性存储器EEPROM里。

WJ61系列产品按工业标准设计、制造,信号输入 / 输出之间隔离,可承受3000VDC隔离电压,抗干扰能力 强,可靠性高。工作温度范围-45℃~+85℃。

功能简介:

WJ61 开关量信号隔离采集模块,可以用来测量16路开关量信号。

1、开关量信号输入

16 路开关量信号输入。输入与 RS232/485 输出之间互相隔离。支持 16 路干接点输入或 16 路湿接点输入。

2、通讯协议

通讯接口: 1路标准的 RS-485 通讯接口或 1路标准的 RS-232 通讯接口,订货选型时注明。

通讯协议:支持两种协议,命令集定义的字符协议和 MODBUS RTU 通讯协议。模块自动识别通讯协议, 能实现与多种品牌的 PLC、RTU 或计算机监控系统进行网络通讯。

数据格式: 10位。1位起始位,8位数据位,1位停止位。

通讯地址(0~255)和波特率(2400、4800、9600、19200、38400、57600、115200bps)均可设定;通讯 网络最长距离可达 1200 米, 通过双绞屏蔽电缆连接。

通讯接口高抗干扰设计,±15KV ESD 保护,通信响应时间小于 100mS。

3、抗干扰

可根据需要设置校验和。模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块,内部的数 字滤波, 也可以很好的抑制来自电网的工频干扰。

产品选型:

选型举例 1: 型号: WJ61-232 表示输出为 RS-232 接口 选型举例 2: 型号: WJ61-485 表示输出为 RS-485 接口

WJ61通用参数:

(typical @ +25°C, Vs为24VDC)

输入类型: 湿接点输入

低电平(0): 输入 < 3V 高电平(1): 输入 10~50V

干接点输入

低电平(0): 断开

高电平(1): 接通到 D.GND

输入电阻: 5.1KΩ

通 讯: 协议 RS-485 或 RS-232 标准字符协议 和 MODBUS RTU通讯协议

波特率(2400、4800、9600、19200、38400、57600、115200bps)可软件选择

地址(0~255)可软件选择

通讯响应时间: 100 ms 最大

工作电源: +8~32VDC 宽供电范围,内部有防反接和过压保护电路

功率消耗: 小于0.5W

工作温度: -45~+80℃

工作湿度: 10~90%(无凝露)

存储温度: -45~+80℃

存储湿度: 10~95%(无凝露)

隔离耐压: 输入/输出 之间: 3KVDC, 1分钟, 漏电流 1mA

其中 RS-232 / RS-485 输出和电源共地。

耐冲击电压: 3KVAC, 1.2/50us(峰值)

外形尺寸: 120 mm x 70 mm x 43mm

引脚定义:

引脚	名称	描述	引脚	名称	描述
1	D.GND	开关量信号地线	14	DI0	通道0开关量信号输入
2	DI11	通道 11 开关量信号输入	15	DI1	通道1开关量信号输入
3	DI12	通道 12 开关量信号输入	16	DI2	通道2开关量信号输入
4	DI13	通道 13 开关量信号输入	17	DI3	通道3开关量信号输入
5	DI14	通道 14 开关量信号输入	18	DI4	通道4开关量信号输入
6	DI15	通道 15 开关量信号输入	19	DI5	通道 5 开关量信号输入
7	DI	开关量信号公共端	20	DI	开关量信号公共端
	COM		20	COM	
8	NC	空脚	21	DI6	通道6开关量信号输入
9	NC	空脚	22	DI7	通道7开关量信号输入
10	DATA+	RS-485 信号正端	23	DI8	通道8开关量信号输入
11	DATA-	RS-485 信号负端	24	DI9	通道9开关量信号输入
12	PW+	电源正端	25	DI10	通道 10 开关量信号输入
13	GND	电源负端	26	D.GND	开关量信号地线

表1 引脚定义

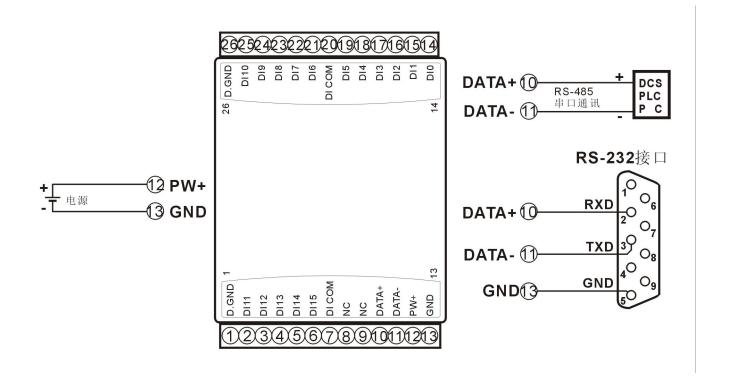
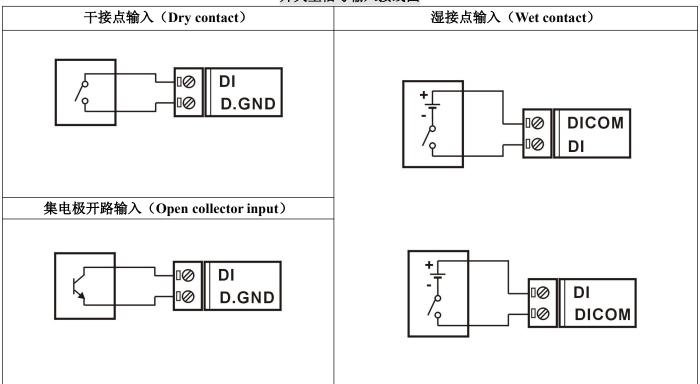



图 3 WJ61 模块接线图

开关量信号输入接线图

WJ61 字符协议命令集:

模块的出厂初始设置,如下所示:

地址代码为01

波特率 9600 bps

禁止校验和

如果使用 RS-485 网络,必须分配一个独一无二的地址代码,地址代码取值为 16 进制数在 00 和 FF 之间, 由于新模块的地址代码都是一样的,他们的地址将会和其他模块矛盾,所以当你组建系统时,你必须重新配置每 一个 WJ61 模块地址。可以在接好 WJ61 模块电源线和 RS485 通讯线后,通过配置命令来修改 WJ61 模块的地址。 波特率,校验和状态也需要根据用户的要求而调整。而在修改波特率,校验和状态之前,必须让模块先进入缺省 状态, 否则无法修改。

让模块进入缺省状态的方法:

WJ61 模块边上都有一个 INIT 的开关, 在模块的侧面位置。将 INIT 开关拨到 INIT 位置, 再接通电源, 此时 模块进入缺省状态。在这个状态时,模块的配置如下:

地址代码为00

波特率 9600 bps

禁止校验和

这时,可以通过配置命令来修改 WJ61 模块的波特率,校验和状态等参数。在不确定某个模块的具体配置时, 也可以将 INIT 开关拨到 INIT 位置,使模块进入缺省状态,再对模块进行重新配置。

注: 正常使用时请将 INIT 开关拨到 NORMAL 位置。

字符协议命令由一系列字符组成,如首码、地址 ID,变量、可选校验和字节和一个用以显示命令结束符(cr)。 主机除了带通配符地址"**"的同步的命令之外,一次只指挥一个 WJ61 模块。

命令格式: (Leading Code)(Addr)(Command)[data][checksum](cr)

(Leading code) 首码是命令中的第一个字母。所有命令都需要一个命令首码,如%,\$,#,@,...等。 1- 字符

模块的地址代码, 如果下面没有指定, 取值范围从 00~FF (十六进制)。

2- 字符

(Command) 显示的是命令代码或变量值。

变量长度

一些输出命令需要的数据。 [data]

变量长度

[checksum] 括号中的Checksum(校验和)显示的是可选参数,只有在启用校验和时,才需要此选项。 2- 字符 识别用的一个控制代码符,(cr)作为回车结束符,它的值为0x0D。

当启用校验和(checksum)时,就需要[Checksum]。它占2-字符。命令和应答都必须附加校验和特性。校验和 用来检查所有输入命令,来帮助你发现主机到模块命令错误和模块到主机响应的错误。校验和字符放置在命令或 响应字符之后, 回车符之前。

计算方法:两个字符,十六进制数,为之前所发所有字符的ASCII码数值之和,然后与十六进制数0xFF相与所得。 应用举例:禁止校验和(checksum)

用户命令 \$002(cr)

模块应答 !00020600 (cr)

启用校验和(checksum)

用户命令 \$002B6 (cr)

模块应答 !00020600 A9 (cr)

\$' = 0x240' = 0x302' = 0x32

B6=(0x24+0x30+0x30+0x32) AND 0xFF

0' = 0x30'!' = 0x212' = 0x326' = 0x36

A9=(0x21+0x30+0x30+0x30+0x32+0x30+0x36+0x30+0x30) AND 0xFF

命令的应答:

应答信息取决于各种各样的命令。应答也由几个字符组成,包括首代码,变量和结束标识符。应答信号的首 代码有两种, '!'或'>'表示有效的命令而'?'则代表无效。通过检查应答信息,可以监测命令是否有效

- 注意: 1、在一些情况下,许多命令用相同的命令格式。要确保你用的地址在一个命令中是正确的,假如你用错误的地址,而这个地址代表着另一个模块,那么命令会在另一个模块生效,因此产生错误。
 - 2、必须用大写字母输入命令。
 - 3、(cr)代表键盘上的回车符,不要直接写出来,应该是敲一下回车键(Enter键)。

1、读取开关状态命令

说 明:从模块中读回所有通道开关量输入端状态。

命令格式: **\$AA6(cr)**

参数说明: \$ 分界符。十六进制为 24H

AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为01,转换成十六进制为每个字符的ASCII 码。如地址01换成十六进制为30H和31H。

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式: !(dataInputHigh) (dataInputLow)00(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符。十六进制为 21H

(dataInputHigh) 代表读取到的开关状态,两个16进制数,

第一个数代表 15~12 通道

第二个数代表 11~8 通道

位值为 0: 输入为低电平

位值为 1: 输入为高电平。

IN15	IN14	IN13	IN12	IN11	IN10	IN9	IN8	
Bit7 Bit 6		Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0	
dataInputHigh								

IN4

Bit 5 | Bit 4 | Bit 3 | Bit2 |

dataInputLow

IN5

IN3

IN2

IN1

Bit 1

IN0

Bit 0

十六进制为每个字符的 ASCII 码。

(dataInputLow) 代表读取到的开关状态,两个 16 进制数,

第一个数代表 7~4 通道

第二个数代表 3~0 通道

位值为 0: 输入为低电平

位值为 1: 输入为高电平。

十六进制为每个字符的 ASCII 码。

(cr) 结束符,上位机回车键,十六进制为0DH。

其他说明:假如格式错误或通讯错误或地址不存在,模块不响应。

如果某个通道已经被关闭,那么读出的数据显示为空格字符。

如果你使用的串口通讯软件输入不了回车键字符,请切换到十六进制格式进行通讯。

应用举例: 用户命令(字符格式) \$016(cr)

(十六进制格式) **243031360D**

模块应答(字符格式) !880100 (cr)

(十六进制格式): 213838303130300D

说 明: 读取到的数据是 8801, 转成 2 进制是 1000 1000 0000 0001, 那么地址 01H 模块上输入开关状态是:

IN7

Bit7

IN6

Bit 6

通道 3: 低电平 通道 0: 高电平 通道 1: 低电平 通道 2: 低电平 通道 4: 低电平 通道 5: 低电平 通道6: 低电平 通道 7: 低电平 通道 8: 低电平 通道 9: 低电平 通道 10: 低电平 通道 11: 高电平 通道 12: 低电平 通道 13: 低电平 通道 14: 低电平 通道 15: 高电平

2、配置 WJ61 模块命令

说 明:对一个 WJ61 模块设置地址,波特率,校验和状态。配置信息储存在非易失性存储器 EEPROM 里。

命令格式: %AANNTTCCFF(cr)

参数说明:% 分界符。

AA 模块地址,取值范围 00~FF(十六进制)。出厂地址为 01,转换成十六进制为每个字符的 ASCII 码。如地址 01 换成十六进制为 30H 和 31H。

NN 代表新的模块 16 进制地址,数值 NN 的范围从 00 到 FF。转换成十六进制为每个字符的 ASCII 码。如地址 18 换成十六进制为 31H 和 38H。

TT 用 16 进制代表类型编码。 WJ61 产品必须设置为 00。

CC 用 16 进制代表波特率编码。

波特率代码	波特率
04	2400 baud
05	4800 baud
06	9600 baud
07	19200 baud
08	38400 baud
09	57600 baud
0A	115200 baud

表 2 波特率代码

FF 用 16 进制的 8 位代表数据格式,校验和。注意从 bits0 到 bits5 不用必须设置为零。

Bit7 Bit 6 Bit 5 Bit	4 Bit 3 Bit2 Bit 1 Bit 0
----------------------	--------------------------

表 3 数据格式,校验和代码

Bit7: 保留位,必须设置为零

Bit6: 校验和状态, 为 0: 禁止; 为 1: 允许

Bit5-bit0:不用,必须设置为零。

(cr) 结束符,上位机回车键,十六进制为0DH。

应答格式: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作,或在改变波特率或校验和前,没有将 INIT 开关拨到 INIT 位置。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表输入模块地址

(cr) 结束符,上位机回车键,十六进制为 0DH。

其他说明:假如你第一次配置模块,AA=01H,NN等于新的地址。假如重新配置模块改变地址、输入范围、数据格式,AA等于当前已配置的地址,NN等于当前的或新的地址。假如要重新配置模块改变波特率或校验和状态,则必须将INIT开关拨到INIT位置,使模块进入缺省状态,此时模块地址为00H,即 AA=00H,NN等于当前的或新的地址。

假如格式错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 %0111000600(cr)

模块应答 !11(cr)

说明:%分界符。

01 表示你想配置的WJ61模块原始地址为01H。

11 表示新的模块 16 进制地址为 11H。

00 类型代码, WJ61 产品必须设置为 00。

- **06** 表示波特率 9600 baud。
- 00 表示禁止校验和。

3、读配置状态命令

说 明: 对指定一个 WJ61 模块读配置。

命令格式: \$AA2(cr)

参数说明: \$ 分界符。

AA 模块地址,取值范围 00~FF(十六进制)。

2 表示读配置状态命令

(cr) 结束符,上位机回车键,十六进制为0DH。

应答格式:!AATTCCFF(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符。

AA 代表输入模块地址。

TT 代表类型编码。

CC 代表波特率编码。见表 2

FF 见表 3

(cr) 结束符,上位机回车键,十六进制为 0DH。

其他说明: 假如格式错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 \$302(cr)

模块应答 !300F0600(cr)

说明:!分界符。

30 表示WJ61模块地址为30H。

00 表示输入类型代码。

06 表示波特率 9600 baud。

00 表示禁止校验和。

4、读模块名称命令

说明:对指定一个WJ61模块读模块名称。

命令格式: \$AAM(cr)

参数说明: \$ 分界符。

AA 模块地址,取值范围 00~FF(十六进制)。

M 表示读模块名称命令

(cr) 结束符,上位机回车键,十六进制为 0DH。

应答格式: !AA(ModuleName)(cr) 命令有效。

?AA(cr) 命令无效或非法操作

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表输入模块地址。

(ModuleName) 模块名称 WJ61

(cr) 结束符,上位机回车键,十六进制为0DH。

其他说明:假如格式错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 **\$08M(cr)**

模块应答 !08WJ61 (cr)

说 明: 在地址 08H 模块为 WJ61。

Modbus RTU 通讯协议:

模块的出厂初始设置,如下所示:

Modbus 地址为 01 波特率 9600 bps

让模块进入缺省状态的方法:

WJ61模块边上都有一个INIT的开关,在模块的侧面位置。将INIT开关拨到INIT位置,再接通电源,此时模块进入缺省状态。在这个状态时,模块暂时恢复为默认的状态:地址为01,波特率为9600。在不确定某个模块的具体配置时,用户可以查询地址和波特率的寄存器40201-40202,得到模块的实际地址和波特率,也可以跟据需要修改地址和波特率。

注: 正常使用时请将 INIT 开关拨到 NORMAL 位置。

支持Modbus RTU通讯协议,命令格式按照标准Modbus RTU通讯协议。

支持功能码01, 读线圈状态。1表示高电平, 0表示低电平。

支持功能码03(读保持寄存器)和功能码06(写单个寄存器),

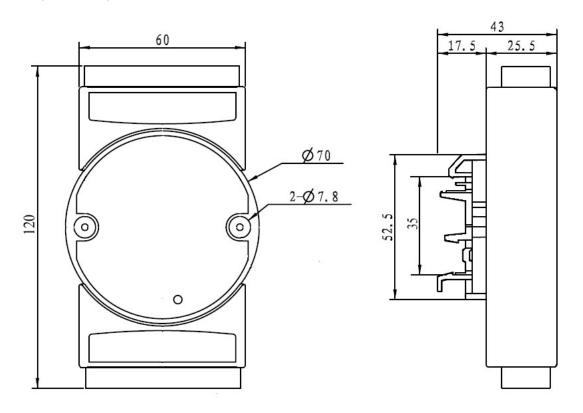
Modbus RTU 通讯协议应用举例:

1,支持Modbus RTU通讯协议功能码01(读线圈状态),命令格式按照标准Modbus RTU通讯协议。通讯举例:假如模块地址为01,以16进制发送: 0101002000103DC6,即可取得寄存器的数据。

01	01	00	20	00	10	3C	0C
模块地址	读线圈状态	线圈地址高位	线圈地址低位	线圈数量高位	线圈数量低位	CRC 校验低位	CRC 校验高位

假如模块回复: 0101020003F9FD 即读到的数据为 0x0003, 换成 2 进制即 $0000\,0000\,0000\,0011$ 。即表明现在输入通道 8 和 9 高电平,其他为低电平。

01	01	02	00	03	F9	FD
模块地址	读线圈状态	数据的字节数	数据	数据	CRC 校验低位	CRC 校验高位


寄存器说明:

H 11 HH 00 71.		T	1	1
地址 0X (PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
00033	0032	输入的开关量	只读	通道0的电平状态
00034	0033	输入的开关量	只读	通道1的电平状态
00035	0034	输入的开关量	只读	通道2的电平状态
00036	0035	输入的开关量	只读	通道3的电平状态
00037	0036	输入的开关量	只读	通道4的电平状态
00038	0037	输入的开关量	只读	通道5的电平状态
00039	0038	输入的开关量	只读	通道6的电平状态
00040	0039	输入的开关量	只读	通道7的电平状态
00041	0040	输入的开关量	只读	通道8的电平状态
00042	0041	输入的开关量	只读	通道9的电平状态
00043	0042	输入的开关量	只读	通道 10 的电平状态
00044	0043	输入的开关量	只读	通道 11 的电平状态
00045	0044	输入的开关量	只读	通道 12 的电平状态
00046	0045	输入的开关量	只读	通道 13 的电平状态
00047	0046	输入的开关量	只读	通道 14 的电平状态
00048	0047	输入的开关量	只读	通道 15 的电平状态
地址 4X (PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
40001	0000	输入的开关量	读/写	0x0000~0xFFFF, 15~0 通道
40201	0200	模块地址	读/写	整数,重启后生效,范围
				0x0000-0x00FF
40202	0201	波特率	读/写	整数,重启后生效,范围
				0x0004-0x000A
				0x0004 = 2400 bps,
				0x0005 = 4800 bps
				0x0006 = 9600 bps,
				0x0007 = 19200 bps
				0x0008 = 38400 bps,
				0x0009 = 57600 bps
				0x000A = 115200bps
40211	0210	模块名称	只读	高位: 0x00 低位: 0x61

表 5 Modbus Rtu 寄存器说明

外形尺寸: (单位: mm)

可以安装在标准 DIN35 导轨上

保修:

本产品自售出之日起两年内,凡用户遵守贮存、运输及使用要求,而产品质量低于技术指标的,可以返厂免费维修。因违反操作规定和要求而造成损坏的,需交纳器件费用和维修费。

版权:

版权 © 2025 深圳市维君瑞科技有限公司。

如未经许可,不得复制、分发、翻译或传输本说明书的任何部分。本说明书如有修改和更新,恕不另行通知。

商标:

本说明书提及的其他商标和版权归各自的所有人所有。

版本号: V1.3 日期: 2025年8月